Part Number Hot Search : 
MSB054 DPA05 CJ7806H AD584JNZ 230002B 1N756A 68HC11 UR4KB005
Product Description
Full Text Search
 

To Download M27C4001-35F1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M27C4001
4 Mbit (512Kb x 8) UV EPROM and OTP EPROM
Feature summary

5V 10% supply voltage in Read operation Access time: 35ns Low power consumption: - Active Current 30mA at 5MHz - Standby Current 100A Programming voltage: 12.75V 0.25V Programming time: 100s/Word Electronic signature - Manufacturer Code: 20h - Device Code: 41h Packages - ECOPACK(R) compliant versions
32
32
1

FDIP32W (F)
1
PDIP32 (B)
PLCC32 (C)
TSOP32 (N) 8 x 20 mm
March 2006
Rev 4
1/24
www.st.com 1
Contents
M27C4001
Contents
1 2 Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Two Line Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 System Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PRESTO II Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Erasure operation (applies to UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . 11
3 4 5 6 7
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
M27C4001
List of tables
List of tables
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Read Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Programming Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Programming Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FDIP32W - 32 pin Ceramic Frit-seal DIP with window, package mechanical data. . . . . . . 18 PDIP32 - 32 lead Plastic DIP, 600 mils width, package mechanical data . . . . . . . . . . . . . 19 PLCC32 - 32 lead Plastic Leaded Chip Carrier, package mechanical data . . . . . . . . . . . . 20 TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data. . . . 21 Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3/24
List of figures
M27C4001
List of figures
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 LCC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 AC Testing Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Programming and Verify Modes AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FDIP32W - 32 pin Ceramic Frit-seal DIP with window, Package Outline . . . . . . . . . . . . . . 18 PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Outline. . . . . . . . . . . . . . . . . . . . . 19 PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline . . . . . . . . . . . . . . . . . . . 20 TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline . . . . . . . . . . . 21
4/24
M27C4001
Summary description
1
Summary description
The M27C4001 is a 4 Mbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large programs and is organised as 524,288 by 8 bits. The FDIP32W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure. For applications where the content is programmed only one time and erasure is not required, the M27C4001 is offered in PDIP32, PLCC32 and TSOP32 (8 x 20 mm) packages. In order to meet environmental requirements, ST offers the M27C4001 in ECOPACK(R) packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 1. Logic Diagram
VCC VPP
19 A0-A18
8 Q0-Q7
E G
M27C4001
VSS
AI00721B
Table 1.
A0-A18 Q0-Q7 E G VPP VCC VSS
Signal names
Address Inputs Data Outputs Chip Enable Output Enable Program Supply Supply Voltage Ground
5/25
Summary description Figure 2. DIP Connections
VPP A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 Q0 Q1 Q2 VSS 1 32 2 31 3 30 4 29 5 28 6 27 7 26 8 25 M27C4001 9 24 10 23 11 22 12 21 13 20 14 19 15 18 16 17
AI00722
M27C4001
VCC A18 A17 A14 A13 A8 A9 A11 G A10 E Q7 Q6 Q5 Q4 Q3
Figure 3.
LCC Connections
A12 A15 A16 VPP VCC A18 A17 1 32 A7 A6 A5 A4 A3 A2 A1 A0 Q0 A14 A13 A8 A9 A11 G A10 E Q7 9 M27C4001 25 17 Q1 Q2 VSS Q3 Q4 Q5 Q6
AI00723
6/25
M27C4001 Figure 4. TSOP Connections
A11 A9 A8 A13 A14 A17 A18 VCC VPP A16 A15 A12 A7 A6 A5 A4 1 32 G A10 E Q7 Q6 Q5 Q4 Q3 VSS Q2 Q1 Q0 A0 A1 A2 A3
Summary description
8 9
M27C4001 (Normal)
25 24
16
17
AI01155B
7/25
Device operation
M27C4001
2
Device operation
The operating modes of the M27C4001 are listed in the Operating Modes table. A single power supply is required in the read mode. All inputs are TTL levels except for VPP and 12V on A9 for Electronic Signature.
2.1
Read Mode
The M27C4001 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (E) is the power control and should be used for device selection. Output Enable (G) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time (tAVQV) is equal to the delay from E to output (tELQV). Data is available at the output after a delay of tGLQV from the falling edge of G, assuming that E has been low and the addresses have been stable for at least tAVQV-tGLQV.
2.2
Standby Mode
The M27C4001 has a standby mode which reduces the supply current from 30mA to 100A. The M27C4001 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the G input.
2.3
Two Line Output Control
Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows: a) b) the lowest possible memory power dissipation, complete assurance that output bus contention will not occur.
For the most efficient use of these two control lines, E should be decoded and used as the primary device selecting function, while G should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.
8/25
M27C4001
Device operation
2.4
System Considerations
The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, ICC, has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1F ceramic capacitor be used on every device between VCC and VSS. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7F bulk electrolytic capacitor should be used between VCC and VSS for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.
2.5
Programming
When delivered (and after each erasure for UV EPROM), all bits of the M27C4001 are in the '1' state. Data is introduced by selectively programming '0's into the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27C4001 is in the programming mode when VPP input is at 12.75V, G is at VIH and E is pulsed to VIL. The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. VCC is specified to be 6.25V 0.25V.
2.6
PRESTO II Programming Algorithm
PRESTO II Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of 52.5 seconds. Programming with PRESTO II consists of applying a sequence of 100s program pulses to each byte until a correct verify occurs (see Figure 5). During programming and verify operation, a MARGIN MODE circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE provides the necessary margin to each programmed cell.
9/25
Device operation Figure 5. Programming Flowchart
VCC = 6.25V, VPP = 12.75V
M27C4001
n=0
E = 100s Pulse NO ++n = 25 YES NO VERIFY YES Last Addr NO ++ Addr
FAIL
YES CHECK ALL BYTES 1st: VCC = 6V 2nd: VCC = 4.2V
AI00760B
2.7
Program Inhibit
Programming of multiple M27C4001s in parallel with different data is also easily accomplished. Except for E, all like inputs including G of the parallel M27C4001 may be common. A TTL low level pulse applied to a M27C4001's E input, with VPP at 12.75V, will program that M27C4001. A high level E input inhibits the other M27C4001s from being programmed.
2.8
Program Verify
A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with G at VIL, E at VIH, VPP at 12.75V and VCC at 6.25V.
2.9
Electronic Signature
The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25C 5C ambient temperature range that is required when programming the M27C4001. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27C4001 with VPP = VCC = 5V. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during Electronic Signature mode. Byte 0 (A0 = VIL) represents the manufacturer code and byte 1 (A0 = VIH) the device identifier code. For the STMicroelectronics M27C4001, these two identifier bytes are given in Table 3 and can be read-out on outputs Q7 to Q0.
10/25
M27C4001
Device operation
2.10
Erasure operation (applies to UV EPROM)
The erasure characteristics of the M27C4001 are such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 A. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 A range. Data shows that constant exposure to room level fluorescent lighting could erase a typical M27C4001 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27C4001 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27C4001 window to prevent unintentional erasure. The recommended erasure procedure for the M27C4001 is exposure to short wave ultraviolet light which has wavelength of 2537 A. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 15 W-sec/cm2. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 W/cm2 power rating. The M27C4001 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure. Table 2. Operating Modes(1)
E VIL VIL VIL Pulse VIH VIH VIH VIL G VIL VIH VIH VIL VIH X VIL A9 X X X X X X VID Vpp VCC or VSS VCC or VSS VPP VPP VPP VCC or VSS VCC Q7 - Q0 Data Out Hi-Z Data In Data Out Hi-Z Hi-Z Codes
Mode Read Output Disable Program Verify Program Inhibit Standby Electronic Signature
1. X = VIH or VIL, VID = 12V 0.5V.
Table 3.
Electronic Signature
A0 VIL VIH Q7 0 0 Q6 0 1 Q5 1 0 Q4 0 0 Q3 0 0 Q2 0 0 Q1 0 0 Q0 0 1 Hex Data 20h 41h
Identifier Manufacturer's Code Electronic Signature
11/25
Maximum rating
M27C4001
3
Maximum rating
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 4.
Symbol TA TBIAS TSTG VIO(2) VCC VA9(2) VPP Ambient Operating
Absolute Maximum Ratings
Parameter Temperature(1) Value -40 to 125 -50 to 125 -65 to 150 -2 to 7 -2 to 7 -2 to 13.5 -2 to 14 Unit C C C V V V V
Temperature Under Bias Storage Temperature Input or Output Voltage (except A9) Supply Voltage A9 Voltage Program Supply Voltage
1. Depends on range. 2. Minimum DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns.
12/25
M27C4001
DC and AC parameters
4
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 5. AC Measurement Conditions
High Speed Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages 10ns 0 to 3V 1.5V Standard 20ns 0.4 to 2.4V 0.8 and 2V
Figure 6.
AC Testing Input Output Waveform
High Speed 3V 1.5V 0V
Standard 2.4V 2.0V 0.8V
AI01822
0.4V
Figure 7.
AC Testing Load Circuit
1.3V
1N914
3.3k DEVICE UNDER TEST CL
OUT
CL = 30pF for High Speed CL = 100pF for Standard CL includes JIG capacitance
AI01823B
13/25
DC and AC parameters Table 6.
Symbol CIN COUT
M27C4001 Capacitance (1) (2)
Parameter Input Capacitance Output Capacitance Test Condition VIN = 0V VOUT = 0V Min Max 6 12 Unit pF pF
1. TA = 25 C, f = 1 MHz. 2. Sampled only, not 100% tested. .
Table 7.
Symbol ILI ILO ICC ICC1 ICC2 IPP VIL VIH(3) VOL VOH
Read Mode DC Characteristics(1) (2)
Parameter Input Leakage Current Output Leakage Current Supply Current Supply Current (Standby) TTL Supply Current (Standby) CMOS Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL Output High Voltage CMOS IOL = 2.1mA IOH = -400A IOH = -100A 2.4 VCC - 0.7V Test Condition 0V VIN VCC 0V VOUT VCC E = VIL, G = VIL, IOUT = 0mA, f = 5MHz E = VIH E > VCC - 0.2V VPP = VCC -0.3 2 Min Max 10 10 30 1 100 10 0.8 VCC + 1 0.4 Unit A A mA mA A A V V V V V
1. TA = 0 to 70 C or -40 to 85 C; VCC = 5V 5% or 5V 10%; VPP = VCC 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.. 3. Maximum DC voltage on Output is VCC +0.5V.
Table 8.
Symbol ILI ICC IPP VIL VIH VOL VOH VID
Programming Mode DC Characteristics (1) (2)
Parameter Input Leakage Current Supply Current Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL A9 Voltage IOL = 2.1mA IOH = -400A 2.4 11.5 12.5 E = VIL -0.3 2 Test Condition 0 VIN VCC Min Max 10 50 50 0.8 VCC + 0.5 0.4 Unit A mA mA V V V V V
1. TA = 25 C; VCC = 6.25V 0.25V; VPP = 12.75V 0.25V. 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
14/25
M27C4001 Figure 8.
A0-A18
DC and AC parameters Read Mode AC Waveforms
VALID tAVQV E tGLQV G tELQV Q0-Q7 tGHQZ Hi-Z tEHQZ tAXQX VALID
AI00724B
Table 9.
Read Mode AC Characteristics(1) (2)
M27C4001
Symbol
Alt
Parameter
Test Condition
-35(3) Min
-45(3)
-55(3) Min Max 55 55 30 0 0 0 30 30
Unit
Max Min Max 35 35 20 45 45 25 0 0 0 30 30
tAVQV tELQV tGLQV tEHQZ(4) tGHQZ(4) tAXQX
tACC tCE tOE tDF tDF tOH
Address Valid to Output Valid Chip Enable Low to Output Valid Output Enable Low to Output Valid Chip Enable High to Output Hi-Z Output Enable High to Output Hi-Z Address Transition to Output Transition
E = VIL, G = VIL G = VIL E = VIL G = VIL E = VIL E = VIL, G = VIL 0 0 0
ns ns ns ns ns ns
30 30
1. TA = 0 to 70 C or -40 to 85 C; VCC = 5V 5% or 5V 10%; VPP = VCC 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP 3. Speed obtained with High Speed AC measurement conditions. 4. Sampled only, not 100% tested.
15/25
DC and AC parameters Table 10. Read Mode AC Characteristics(1) (2)
M27C4001 Symbol Alt Parameter Test Condition -70 Min tAVQV tELQV tGLQV tEHQZ(3) tGHQZ(3) tAXQX tACC tCE tOE tDF tDF tOH Address Valid to Output Valid Chip Enable Low to Output Valid Output Enable Low to Output Valid Chip Enable High to Output Hi-Z Output Enable High to Output Hi-Z Address Transition to Output Transition E = VIL, G = VIL G = VIL E = VIL G = VIL E = VIL E = VIL, G = VIL 0 0 0 Max 70 70 35 30 30 0 0 0 -80/-90 Min Max 80 80 40 30 30 0 0 0
M27C4001
-10/-12/-15 Unit Min Max 100 100 50 30 30 ns ns ns ns ns ns
1. TA = 0 to 70 C or -40 to 85 C; VCC = 5V 5% or 5V 10%; VPP = VCC 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 3. Sampled only, not 100% tested.
16/25
M27C4001 Figure 9.
A0-A18 tAVPL Q0-Q7 tQVEL VPP tVPHEL VCC tVCHEL E tELEH G tQXGL tGLQV DATA IN tEHQX DATA OUT
DC and AC parameters Programming and Verify Modes AC Waveforms
VALID
tGHQZ
tGHAX
PROGRAM
VERIFY
AI00725
Table 11.
Symbol tAVEL tQVEL tVPHEL tVCHEL tELEH tEHQX tQXGL tGLQV tGHQZ tGHAX
Programming Mode AC Characteristics(1) (2) (3)
Alt tAS tDS tVPS tVCS tPW tDH tOES tOE tDFP tAH Parameter Address Valid to Chip Enable Low Input Valid to Chip Enable Low VPP High to Chip Enable Low VCC High to Chip Enable Low Chip Enable Program Pulse Width Chip Enable High to Input Transition Input Transition to Output Enable Low Output Enable Low to Output Valid Output Enable High to Output Hi-Z Output Enable High to Address Transition 0 0 Test Condition Min 2 2 2 2 95 2 2 100 130 105 Max Unit s s s s s s s ns ns ns
1. TA = 25 C; VCC = 6.25V 0.25V; VPP = 12.75V 0.25V 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 3. Sampled only, not 100% tested.
17/25
Package mechanical
M27C4001
5
Package mechanical
Figure 10. FDIP32W - 32 pin Ceramic Frit-seal DIP with window, Package Outline
A2 A3 A1 B1 B D2 D S
N 1 FDIPW-a
A L eA eB C
e
E1
E
1. Drawing is not to scale.
Table 12.
FDIP32W - 32 pin Ceramic Frit-seal DIP with window, package mechanical data
millimeters inches Max 5.72 0.51 3.91 3.89 0.41 1.45 - 0.23 41.73 38.10 2.54 15.24 - - - 13.06 14.99 - 16.18 3.18 32 1.52 7.11 - 4 2.49 - 11 0.280 1.40 4.57 4.50 0.56 - 0.30 42.04 - - - 13.36 - 18.03 4.10 32 0.060 - 4 0.098 - 11 0.590 1.500 0.100 0.600 0.057 0.020 0.154 0.153 0.016 - 0.009 1.643 - - - 0.514 - 0.637 0.125 Typ Min Max 0.225 0.055 0.180 0.177 0.022 - 0.012 1.655 - - - 0.526 - 0.710 0.161
Symbol Typ A A1 A2 A3 B B1 C D D2 e E E1 eA eB L N S O Min
18/25
M27C4001
Package mechanical Figure 11. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Outline
A2 A1 b1 b D2 D S
N
A L eA c
e
E1
1
E
PDIP-C
1. Drawing is not to scale.
Table 13.
Symbol
PDIP32 - 32 lead Plastic DIP, 600 mils width, package mechanical data
millimeters Typ Min Max 4.83 0.38 3.81 0.41 1.14 0.23 41.78 15.24 2.54 - - 15.24 13.46 1.65 3.05 0 32 0.53 1.65 0.38 42.29 - - 15.88 13.97 2.21 3.56 15 0.600 0.100 0.150 0.016 0.045 0.009 1.645 - - 0.600 0.530 0.065 0.120 0 32 0.021 0.065 0.015 1.665 - - 0.625 0.550 0.087 0.140 15 0.015 Typ inches Min Max 0.190
A A1 A2 b b1 c D eA e E E1 S L N
19/25
Package mechanical Figure 12. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline
D D1
1N
M27C4001
A1 A2
B1 E2 E3 E1 E e F 0.51 (.020) 1.14 (.045) D3 R CP A E2 B
D2
D2
PLCC-A
1. Drawing is not to scale.
Table 14.
Symbol
PLCC32 - 32 lead Plastic Leaded Chip Carrier, package mechanical data
millimeters Typ Min 3.18 1.53 0.38 0.33 0.66 Max 3.56 2.41 - 0.53 0.81 0.10 12.32 11.35 4.78 7.62 - 14.86 13.89 6.05 10.16 1.27 - - 0.00 0.89 32 - 12.57 11.51 5.66 - 15.11 14.05 6.93 - - 0.13 - 0.035 32 0.400 0.050 0.300 0.485 0.447 0.188 - 0.585 0.547 0.238 - - 0.000 - Typ inches Min 0.125 0.060 0.015 0.013 0.026 Max 0.140 0.095 - 0.021 0.032 0.004 0.495 0.453 0.223 - 0.595 0.553 0.273 - - 0.005 -
A A1 A2 B B1 CP D D1 D2 D3 E E1 E2 E3 e F R N
20/25
M27C4001
Package mechanical Figure 13. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline
A2
1 N
e E B
N/2
D1 D
A CP
DIE
C
TSOP-a
A1
L
1. Drawing is not to scale.
Table 15.
TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data
millimeters inches Max 1.200 0.050 0.950 0.170 0.100 0.150 1.050 0.250 0.210 0.100 19.800 18.300 0.500 - 7.900 0.500 32 0 5 20.200 18.500 - 8.100 0.700 32 0 5 0.0197 0.7795 0.7205 - 0.3110 0.0197 0.0020 0.0374 0.0067 0.0039 Typ Min Max 0.0472 0.0059 0.0413 0.0098 0.0083 0.0039 0.7953 0.7283 - 0.3189 0.0276
Symbol Typ A A1 A2 B C CP D D1 e E L N Min
21/25
Part numbering
M27C4001
6
Part numbering
Table 16.
Example: Device Type M27 Supply Voltage C = 5V Device Function 4001 = 4 Mbit (512Kb x 8) Speed -35(1) = 35 ns -45(1) = 45 ns -55(1) = 55 ns -70 = 70 ns -80 = 80 ns -90 = 90 ns -10 = 100 ns -12 = 120 ns -15 = 150 ns VCC Tolerance blank = 10% X = 5% Package F = FDIP32W B = PDIP32 C = PLCC32 N = TSOP32: 8 x 20 mm Temperature Range 1 = 0 to 70 C 6 = -40 to 85 C
1. High Speed, see AC Characteristics section for further information.
Ordering Information Scheme
M27C4001 -45 X C 1
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
22/25
M27C4001
Revision history
7
Revision history
Table 17.
Date July 1998 09/25/00 11/29/00
Document revision history
Revision 1 2 3 First Issue AN620 Reference removed PLCC codification changed (Table 16.) Document converted to new template (sections added, information moved). LCCC32W package removed. Package specifications updated (see Section 5: Package mechanical). Packages are ECOPACK(R) compliant. X and TR options removed from Table 16: Ordering Information Scheme. Changes
28-Mar-2006
4
23/25
M27C4001
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
24/24


▲Up To Search▲   

 
Price & Availability of M27C4001-35F1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X